The Land Redevelopment Problem

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

September 5th, 2019

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Abstract

- The land redevelopment problem: Quite common in the real lives.
- **Methodology**: Mechanism design, modelling and simulation(MATLAB).
- **Application**: Real world land related problems.(Especially the land redevelopment problem).
- **Keywords**: Mechanism design, auction, implementation, non-convex optimization.

- Main textbooks: Mechanism Design: A Linear Programming Approach and An Introduction to the Theory of Mechanism Design.
- **Previous presentation paper**: A Conic Approach to the Implementation of Reduced-Form Allocation Rules, working paper, 2019.
- The statement of the problem and feasible mechanisms: The land redevelopment problem, 2017.

- A set of agents N = {1, ..., n}, each owns a separate plot of land.
- The value to agent i of his plot, vi, is private information, with distribution F_i on the support [v, v]. We assume that v_i is independently distributed across owners.
- The redevelopment will yield a payoff of W to a land developer.
- We assume that W ∈ (nv, nv) is common knowledge among all market participants.
- Consider a direct mechanism $\mathcal{M} = \{\rho, t_1..., t_n\}.$

Abstract Introduction The problem Three people case Two shapes of V Two shapes of V(cutting form) References Main Problem
Admissible mechanism requirements

1. *Dominant-strategy incentive compatibility constraint* (DIC)

$$t_{i}(\nu) - \rho(\nu)\nu_{i} \ge t_{i}\left(\nu_{i}',\nu_{-i}\right) - \rho\left(\nu_{i}',\nu_{-i}\right)\nu_{i}.$$

2. No naked expropriation (NNE)

 $\rho(\nu) = 0 \Longrightarrow t_i(\nu) = 0.$

3. *IR constraints* (IR)

 $IR(v){=}\{i:t_i(\nu)-\rho(\nu)\nu_i\geqslant 0\}\,,\,\#IR(\nu)\geqslant m.$

4. Adequate compensation (AC)

$$t_j(v) \ge \frac{1}{\#IR(v)} \sum_{i \in IR(v)} t_i(v).$$

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan The Land Redevelopment Problem The Chinese University of Hong Kong

 $\sum_{i} t_{i}(v) \leq W.$

6. *Ex-ante budget balance* (EABB) $E[\rho(\nu) \left(\sum_{i} t_{i}(\nu) - W\right)] \leq 0.$

We say that a mechanism is admissible if it satisfies DIC, NNE, IR-m, AC, and EPBB.

Here, we set n = 3 and m = 2.

For any v, define (note: not sure about sup or max) $f_i(v) = \max\{v'_i : \rho(v'_i) = 1, \forall i\}$

$$\begin{split} & \mathsf{V}^{\star} {=} \{ \nu : \rho(\nu) = 1 \} \\ & \mathsf{V}_0^{\star} = \{ \nu \in \mathsf{V}^{\star} : \mathsf{f}_i(\nu) < 1, \forall i \} \\ & \mathsf{V}_i^{\star} = \{ \nu \in \mathsf{V}^{\star} : \mathsf{f}_i(\nu) = 1, \mathsf{f}_j(\nu) < 1, j \neq i \} \\ & \mathsf{V}_{i,j}^{\star} = \{ \nu \in \mathsf{V}^{\star} : \mathsf{f}_k(\nu) = 1, k = i, j; \mathsf{f}_k(\nu) < 1, k \neq i, j \} \end{split}$$

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Figure 1: Venn diagram

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Land Redevelopment Problem

The Chinese University of Hong Kong

Figure 2: Conceptual graph of triple extension case

• As we all known, the function $\phi(v)$ is the social surplus function, which means $\phi(v) = 3w - v_1 - v_2 - v_3$. And here we set w = 0.2 as a constant.

$$M = \int_0^w \int_0^w \int_0^w \phi(v) \, dv_3 \, dv_2 \, dv_1 + 3 \times \int_w^1 \int_0^L \int_0^L \phi(v) \, dv_3 \, dv_2 \, dv_1$$
(1)

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

Simulation of triple extension

Figure 3: Simulation Results - Triple

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Figure 4: Conceptual graph of middle addition case

$$M = \int_{0}^{L} \int_{0}^{L} \int_{0}^{L} f(\nu) \, d\nu_3 \, d\nu_2 \, d\nu_1 + 3 \times \int_{L}^{1} \int_{0}^{L} \int_{0}^{L} f(\nu) \, d\nu_3 \, d\nu_2 \, d\nu_1 + 3 \times \int_{0}^{L} \int_{L}^{L+R} \int_{L}^{L+R} f(\nu) \, d\nu_3 \, d\nu_2 \, d\nu_1$$
(2)

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Abstract Introduction The problem Three people case Two shapes of V Two shapes of V(cutting form) References

Concrete simulation

Simulation of middle addition

Figure 5: Simulation Results - Middle

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Concrete simulation

Merged simulation

Figure 6: Simulation Results (Merged)

Density function

Figure 7: Probability density function

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

 Abstract
 Introduction
 The problem
 Three people case
 Two shapes of V
 Two shapes of V(cutting form)
 References

 Concrete simulation
 <

Density function

$$f_X(x) = \begin{cases} f_X^1(x) = 4 \times x, x \in [0, \frac{1}{2}] \\ f_X^2(x) = 4 - 4 \times x, x \in [\frac{1}{2}, 1] \end{cases}$$
(3)

And we assume three variables (v₁, v₂, v₃) are i.i.d. random variables, which means

 $f_X(\nu_1,\nu_2,\nu_3) = f_X(\nu_1) \times f_X(\nu_2) \times f_X(\nu_3).$

• We choose w from 0 to 0.2, and the integral can be divided into the following parts(W.L.G.)

Concrete simulation

Density function(triple extension)

Abstract Introduction The problem Three people case **Two shapes of V**

$$M = \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) f_{X}(v_{1}, v_{2}, v_{3}) dv_{3} dv_{2} dv_{1} + 3 \times \int_{w}^{\frac{1}{2}} \int_{0}^{L} \int_{0}^{L} \phi(v) f_{X}(v_{1}, v_{2}, v_{3}) dv_{3} dv_{2} dv_{1} + 3 \times \int_{\frac{1}{2}}^{1} \int_{0}^{L} \int_{0}^{L} \phi(v) f_{X}(v_{1}, v_{2}, v_{3}) dv_{3} dv_{2} dv_{1} = \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) f_{X}^{1}(v_{1}) f_{X}^{1}(v_{2}) f_{X}^{1}(v_{3}) dv_{3} dv_{2} dv_{1} + 3 \int_{w}^{\frac{1}{2}} \int_{0}^{L} \int_{0}^{L} \phi(v) f_{X}^{1}(v_{1}) f_{X}^{1}(v_{2}) f_{X}^{1}(v_{3}) dv_{3} dv_{2} dv_{1} + 3 \times \int_{0.5}^{1} \int_{0}^{L} \int_{0}^{L} \phi(v) f_{X}^{2}(v_{1}) f_{X}^{1}(v_{2}) f_{X}^{1}(v_{3}) dv_{3} dv_{2} dv_{1}$$

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Two shapes of V(cutting form) References

Concrete simulation

Density function(middle addition)

Abstract Introduction The problem Three people case **Two shapes of V**

We choose w from 0 to 0.2, and the integral can be divided into the following parts(W.L.G.):

$$\begin{aligned} \mathcal{M}' &= \int_{0}^{L} \int_{0}^{L} \int_{0}^{L} \varphi(\nu) f_{X}^{1}(\nu_{1}) f_{X}^{1}(\nu_{2}) f_{X}^{1}(\nu_{3}) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} \\ &+ 3 \times \int_{L}^{\frac{1}{2}} \int_{0}^{L} \int_{0}^{L} \varphi(\nu) f_{X}^{1}(\nu_{1}) f_{X}^{1}(\nu_{2}) f_{X}^{1}(\nu_{3}) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} \\ &+ 3 \times \int_{\frac{1}{2}}^{1} \int_{0}^{L} \int_{0}^{L} \int_{0}^{L} \varphi(\nu) f_{X}^{2}(\nu_{1}) f_{X}^{1}(\nu_{2}) f_{X}^{1}(\nu_{3}) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} \\ &+ 3 \times \int_{0}^{L} \int_{L}^{L+R} \int_{L}^{L+R} \varphi(\nu) f_{X}^{1}(\nu_{1}) f_{X}^{1}(\nu_{2}) f_{X}^{1}(\nu_{3}) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} \end{aligned}$$
(5)

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Two shapes of V(cutting form) References

Concrete simulation

Merged simulation

Figure 8: Plus probability density function

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

Review of previous results

Figure 9: Simulation Results (Merged)

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Concrete simulation

Cutting of triple extension

Figure 10: Conceptual graph of triple extension cutting case

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

Cutting of triple extension

The integral on this area is as followed:

$$M_{3} = \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) \, dv_{3} \, dv_{2} \, dv_{1} + \int_{0}^{L} \int_{0}^{L} \int_{w}^{1} \phi(v) \, dv_{3} \, dv_{2} \, dv_{1} - \int_{L-2T}^{L} \int_{2L-2T-v_{1}}^{L} \int_{w}^{1} \phi(v) \, dv_{3} \, dv_{2} \, dv_{1}$$
(6)

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

Cutting of middle addition

Figure 11: Conceptual graph of middle addition cutting case

Concrete simulation

Cutting of middle addition

$$M_{4} = 3 \times \int_{L-T}^{L+R'} \int_{0}^{L-T} \int_{L-T}^{L+R'} \phi(\nu) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} + 3 \times \int_{0}^{L} \int_{0}^{L} \int_{L+R'}^{1} \phi(\nu) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} - 3 \times \int_{L-2T}^{L} \int_{2L-2T-\nu_{1}}^{L} \int_{L+R'}^{1} \phi(\nu) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1}$$
(7)
$$+ \int_{0}^{L-T} \int_{0}^{L-T} \int_{0}^{L-T} \phi(\nu) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1} + 3 \times \int_{L-T}^{L+R'} \int_{0}^{L-T} \int_{0}^{L-T} \phi(\nu) \, d\nu_{3} \, d\nu_{2} \, d\nu_{1}$$

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

Concrete simulation

Figure 12: Simulation Results: Triple extension(Updated)

Concrete simulation

Concrete simulation

Figure 13: Simulation Results: Middle addition(Updated)

Four shapes: T=0.0025(T is exogenous variable)

Figure 14: Simulation results: four shapes

 Abstract
 Introduction
 The problem
 Three people case
 Two shapes of V
 Two shapes of V(cutting form)
 References

 Concrete simulation
 The problem
 The problem
 The problem
 The problem
 The problem
 References

Tabular for the results

Table 1: The max of the four shapes respectly.(T=0.0025)

	Different shapes					
	Triple	Middle	Triple C	Middle C		
subfigure 5(w=0.21)	0.002923	0.002848	0.002923	0.002744		
subfigure 6(w=0.26)	0.007965	0.009212	0.007968	0.009126		
subfigure 7(w=0.31)	0.02023	0.02255	0.02024	0.02251		
subfigure 8(w=0.36)	0.0434	0.04584	0.04341	0.04588		
subfigure 18(w=0.86)	1.066	1.073	1.066	1.073		

Triple extension: (T is endogenous variable)

Figure 15: Cutting of triple extension

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Middle addition: (T is endogenous variable)

Figure 16: Cutting of middle addition

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Figure 17: Merged forms: w=0.01

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Figure 18: Merged forms: w=0.05

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Figure 19: Merged forms: w=0.2

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Figure 20: Merged forms: w=0.31

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Figure 21: Merged forms: w=0.86

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

Tabular for the results

Table 2: The maximum of two shapes respectly.(T is an endogenous variable)

	Γ	Differen	it shapes a	nd accordin	ig T and	d L
	Triple C	Т	L	Middle C	Т	L
w=0.01-	-0.000003	0.001	0.002	-0.000003	0.001	0.002
w = 0.06	0.000002	0.001	0.002	0.000000	10.001	0.002
w=0.11	0.000218	0.001	0.002	0.00004	0.001	0.008
w=0.31	0.021	0.136	0.274	0.0225	0.001	0.169
w=0.86	1.0659	0.035	0.86	1.0734	0.001	0.483

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Concrete simulation

000

[1] [Xu, 2019] Xu Lang and Zaifu Yang. A Conic Approach to the Implementation of Reduced-Form Allocation Rules, Working Paper, 2019.

- [2] [Border, 1991] Kim C. Border. Implementation of Reduced Form Auctions: A Geometric Approach, Econometrica, 1991.
- [3] [Border, 1991] Kim C. Border. Reduced Form Auctions Revisited, *Economic Theory*, 2007.
- [4] [Hoffman, 1976] Hoffman, A. Total Unimodularity and Combinatorial Theorems, Linear Algebra and Applications, 1976.
- [5] [Matthews, 1984] Matthews. On the Implementability of Reduced Form Auctions, *Econometrica*, 1984.
- [6] [Myerson, 1981] Myerson. Optimal Auction Design, Mathematics of Operations Research, 1981.

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

Abstract	Introduction 0	The problem 000	Three people case 00	Two shapes of V 000000000000	Two shapes of V(cutting form)	References
Concrete	simulation					

The End

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Land Redevelopment Problem

The Chinese University of Hong Kong