The Land Redevelopment Problem

Presenter: Yi Cui, Supervisor: Prof. Jimmy Chan

The Chinese University of Hong Kong

September 5th, 2019

Abstract

- The land redevelopment problem: Quite common in the real lives.
- Methodology: Mechanism design, modelling and simulation(MATLAB).
- Application: Real world land related problems.(Especially the land redevelopment problem).
- Keywords: Mechanism design, auction, implementation, non-convex optimization.

Literature Review

- Main textbooks: Mechanism Design: A Linear Programming Approach and An Introduction to the Theory of Mechanism Design.
- Previous presentation paper: A Conic Approach to the Implementation of Reduced-Form Allocation Rules, working paper, 2019.
- The statement of the problem and feasible mechanisms: The land redevelopment problem, 2017.

Preliminary

- A set of agents $N=\{1, \ldots, n\}$, each owns a separate plot of land.
- The value to agent i of his plot, vi, is private information, with distribution F_{i} on the support $[\underline{v}, \bar{v}]$. We assume that v_{i} is independently distributed across owners.
- The redevelopment will yield a payoff of W to a land developer.
- We assume that $W \in(n \underline{v}, n \bar{v})$ is common knowledge among all market participants.
- Consider a direct mechanism $\mathcal{M}=\left\{\rho, \mathrm{t}_{1} \ldots, \mathrm{t}_{\mathrm{n}}\right\}$.

Admissible mechanism requirements

> 1. Dominant-strategy incentive compatibility constraint (DIC) $\mathfrak{t}_{\mathfrak{i}}(v)-\rho(v) v_{i} \geqslant \mathrm{t}_{\mathfrak{i}}\left(v_{i}^{\prime}, v_{-i}\right)-\rho\left(v_{i^{\prime}}^{\prime}, v_{-\mathfrak{i}}\right) v_{\mathfrak{i}}$.
2. No naked expropriation (NNE)
$\rho(v)=0 \Longrightarrow \mathrm{t}_{\mathfrak{i}}(v)=0$.
3. IR constraints (IR)
$\operatorname{IR}(v)=\left\{i: \mathrm{t}_{\mathrm{i}}(v)-\rho(v) v_{i} \geqslant 0\right\}, \# \operatorname{IR}(v) \geqslant m$.
4. Adequate compensation (AC) $\mathrm{t}_{\mathfrak{j}}(v) \geqslant \frac{1}{\operatorname{\# IR}(v)} \sum_{\mathrm{i} \in \operatorname{IR}(v)} \mathrm{t}_{\mathbf{i}}(v)$.

Main Problem

Admissible mechanism requirements

> 5. Ex-post budget balance (EPBB)
> $\sum_{i} \mathrm{t}_{\mathrm{i}}(v) \leqslant \mathrm{W}$.
6. Ex-ante budget balance (EABB)
$\mathrm{E}\left[\rho(v)\left(\sum_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}(v)-W\right)\right] \leqslant 0$.
We say that a mechanism is admissible if it satisfies DIC, NNE, IR-m, AC, and EPBB.

Definition

Here, we set $\mathrm{n}=3$ and $\mathrm{m}=2$.
For any v , define (note: not sure about sup or max)
$\mathrm{f}_{\mathfrak{i}}(v)=\max \left\{v_{\mathrm{i}}^{\prime}: \rho\left(v_{\mathfrak{i}}^{\prime}\right)=1, \forall \mathfrak{i}\right\}$

$$
\begin{aligned}
V^{*} & =\{v: \rho(v)=1\} \\
V_{0}^{*} & =\left\{v \in V^{*}: f_{i}(v)<1, \forall i\right\} \\
V_{i}^{*} & =\left\{v \in V^{*}: f_{i}(v)=1, f_{j}(v)<1, j \neq i\right\} \\
V_{i, j}^{*} & =\left\{v \in V^{*}: f_{k}(v)=1, k=i, j ; f_{k}(v)<1, k \neq i, j\right\}
\end{aligned}
$$

Basic theory

Venn illustration

The Venn Diagram of the Value Space

Figure 1: Venn diagram

Concrete simulation

Triple extension

Figure 2: Conceptual graph of triple extension case

Triple extension

- As we all known, the function $\phi(v)$ is the social surplus function, which means $\phi(v)=3 w-v_{1}-v_{2}-v_{3}$. And here we set $w=0.2$ as a constant.

$$
\begin{equation*}
M=\int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) d v_{3} d v_{2} d v_{1}+3 \times \int_{w}^{1} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1} \tag{1}
\end{equation*}
$$

Concrete simulation

Simulation of triple extension

Figure 3: Simulation Results - Triple

Middle addition

Figure 4: Conceptual graph of middle addition case

Concrete simulation

Middle addition

$$
\begin{align*}
M= & \int_{0}^{L} \int_{0}^{L} \int_{0}^{L} f(v) d v_{3} d v_{2} d v_{1}+3 \times \int_{L}^{1} \int_{0}^{L} \int_{0}^{L} f(v) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{0}^{L} \int_{L}^{L+R} \int_{L}^{L+R} f(v) d v_{3} d v_{2} d v_{1} \tag{2}
\end{align*}
$$

Concrete simulation

Simulation of middle addition

Figure 5: Simulation Results - Middle

Concrete simulation

Merged simulation

Figure 6: Simulation Results (Merged)

Concrete simulation

Density function

Figure 7: Probability density function

Density function

$$
f_{X}(x)=\left\{\begin{array}{c}
f_{X}^{1}(x)=4 \times x, x \in\left[0, \frac{1}{2}\right] \tag{3}\\
f_{X}^{2}(x)=4-4 \times x, x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

- And we assume three variables $\left(v_{1}, v_{2}, v_{3}\right)$ are i.i.d. random variables, which means

$$
\mathrm{f}_{\mathrm{X}}\left(v_{1}, v_{2}, v_{3}\right)=\mathrm{f}_{\mathrm{X}}\left(v_{1}\right) \times \mathrm{f}_{\mathrm{X}}\left(v_{2}\right) \times \mathrm{f}_{\mathrm{X}}\left(v_{3}\right) .
$$

- We choose w from 0 to 0.2 , and the integral can be divided into the following parts(W.L.G.)

Density function(triple extension)

$$
\begin{align*}
M= & \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) f_{X}\left(v_{1}, v_{2}, v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{w}^{\frac{1}{2}} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) \mathrm{f}_{X}\left(v_{1}, v_{2}, v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{\frac{1}{2}}^{1} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) \mathrm{f}_{X}\left(v_{1}, v_{2}, v_{3}\right) \mathrm{d} v_{3} d v_{2} d v_{1} \tag{4}\\
= & \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) \mathrm{f}_{X}^{1}\left(v_{1}\right) \mathrm{f}_{X}^{1}\left(v_{2}\right) \mathrm{f}_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \int_{w}^{\frac{1}{2}} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) f_{X}^{1}\left(v_{1}\right) \mathrm{f}_{X}^{1}\left(v_{2}\right) \mathrm{f}_{X}^{1}\left(v_{3}\right) \mathrm{d} v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{0}^{1} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) \mathrm{f}_{X}^{2}\left(v_{1}\right) \mathrm{f}_{X}^{1}\left(v_{2}\right) f_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1}
\end{align*}
$$

Density function(middle addition)

We choose w from 0 to 0.2 , and the integral can be divided into the following parts(W.L.G.):

$$
\begin{align*}
M^{\prime}= & \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) f_{X}^{1}\left(v_{1}\right) f_{X}^{1}\left(v_{2}\right) f_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{L}^{\frac{1}{2}} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) f_{X}^{1}\left(v_{1}\right) f_{X}^{1}\left(v_{2}\right) f_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{\frac{1}{2}}^{1} \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \phi(v) f_{X}^{2}\left(v_{1}\right) f_{X}^{1}\left(v_{2}\right) f_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1} \\
& +3 \times \int_{0}^{\mathrm{L}} \int_{L}^{L+R} \int_{L}^{L+R} \phi(v) f_{X}^{1}\left(v_{1}\right) f_{X}^{1}\left(v_{2}\right) f_{X}^{1}\left(v_{3}\right) d v_{3} d v_{2} d v_{1} \tag{5}
\end{align*}
$$

Concrete simulation

Merged simulation

Figure 8: Plus probability density function

Concrete simulation

Review of previous results

Figure 9: Simulation Results (Merged)

Concrete simulation

Cutting of triple extension

Figure 10: Conceptual graph of triple extension cutting case

Cutting of triple extension

The integral on this area is as followed:

$$
\begin{align*}
M_{3}= & \int_{0}^{w} \int_{0}^{w} \int_{0}^{w} \phi(v) d v_{3} d v_{2} d v_{1}+\int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \int_{w}^{1} \phi(v) d v_{3} d v_{2} d v_{1} \\
& -\int_{\mathrm{L}-2 \mathrm{~T}}^{\mathrm{L}} \int_{2 \mathrm{~L}-2 \mathrm{~T}-v_{1}}^{\mathrm{L}} \int_{w}^{1} \phi(v) d v_{3} d v_{2} d v_{1} \tag{6}
\end{align*}
$$

Concrete simulation

Cutting of middle addition

Figure 11: Conceptual graph of middle addition cutting case

Cutting of middle addition

$$
\begin{align*}
\mathrm{M}_{4}= & 3 \times \int_{\mathrm{L}-\mathrm{T}}^{\mathrm{L}+\mathrm{R}^{\prime}} \int_{0}^{\mathrm{L}-\mathrm{T}} \int_{\mathrm{L}-\mathrm{T}}^{\mathrm{L}+\mathrm{R}^{\prime}} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1} \\
& +3 \times \int_{0}^{\mathrm{L}} \int_{0}^{\mathrm{L}} \int_{\mathrm{L}+\mathrm{R}^{\prime}}^{1} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1} \\
& -3 \times \int_{\mathrm{L}-2 \mathrm{~T}}^{\mathrm{L}} \int_{2 \mathrm{~L}-2 \mathrm{~T}-v_{1}}^{\mathrm{L}} \int_{\mathrm{L}+\mathrm{R}^{\prime}}^{1} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1} \tag{7}\\
& +\int_{0}^{\mathrm{L}-\mathrm{T}} \int_{0}^{\mathrm{L}-\mathrm{T}} \int_{0}^{\mathrm{L}-\mathrm{T}} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1} \\
& +3 \times \int_{\mathrm{L}-\mathrm{T}}^{\mathrm{L}+\mathrm{R}^{\prime}} \int_{0}^{\mathrm{L}-\mathrm{T}} \int_{0}^{\mathrm{L}-\mathrm{T}} \phi(v) \mathrm{d} v_{3} \mathrm{~d} v_{2} \mathrm{~d} v_{1}
\end{align*}
$$

Concrete simulation

Concrete simulation

Figure 12: Simulation Results: Triple extension(Updated)

Concrete simulation

Concrete simulation

Figure 13: Simulation Results: Middle addition(Updated)

Four shapes: $\mathrm{T}=0.0025$ (T is exogenous variable)

Figure 14: Simulation results: four shapes

Tabular for the results

Table 1: The max of the four shapes respectly. $(T=0.0025)$

Different shapes

Triple Middle Triple C Middle C

subfigure $5(\mathrm{w}=0.21)$	0.002923	0.002848	0.002923	0.002744
subfigure $6(\mathrm{w}=0.26)$	0.007965	0.009212	0.007968	0.009126
subfigure $7(\mathrm{w}=0.31)$	0.02023	0.02255	0.02024	0.02251
subfigure $8(\mathrm{w}=0.36)$	0.0434	0.04584	0.04341	0.04588
subfigure $18(\mathrm{w}=0.86)$	1.066	1.073	1.066	1.073

Concrete simulation

Triple extension: (T is endogenous variable)

Figure 15: Cutting of triple extension

Concrete simulation

Middle addition: (T is endogenous variable)

Figure 16: Cutting of middle addition

Concrete simulation

Merged forms: w=0.01

Figure 17: Merged forms: $\mathrm{w}=0.01$

Concrete simulation

Merged forms: w=0.05

Figure 18: Merged forms: $\mathrm{w}=0.05$

Concrete simulation

Merged forms: w=0.2

Figure 19: Merged forms: $w=0.2$

Concrete simulation

Merged forms: $\mathrm{w}=0.31$

Figure 20: Merged forms: $\mathrm{w}=0.31$

Concrete simulation

Merged forms: w=0.86

Figure 21: Merged forms: $\mathrm{w}=0.86$

Tabular for the results

Table 2: The maximum of two shapes respectly.(T is an endogenous variable)

Different shapes and according T and L Triple C T L Middle C T L

$\mathrm{w}=0.01-0.000003$	0.001	0.002	-0.000003	0.001	0.002
$\mathrm{w}=0.06$	0.000002	0.001	0.002	0.00000010 .001	0.002
$\mathrm{w}=0.11$	0.000218	0.001	0.002	0.00004	0.001
$\mathrm{w}=0.31$	0.021	0.136	0.274	0.0225	0.001
$\mathrm{w}=0.86$	1.0659	0.035	0.86	1.0734	0.001
	0.169				
					0.483

[1] [$\mathrm{Xu}, 2019] \mathrm{Xu}$ Lang and Zaifu Yang. A Conic Approach to the Implementation of Reduced-Form Allocation Rules, Working Paper, 2019.
[2] [Border, 1991] Kim C. Border. Implementation of Reduced Form Auctions: A Geometric Approach, Econometrica, 1991.
[3] [Border, 1991] Kim C. Border. Reduced Form Auctions Revisited, Economic Theory, 2007.
[4] [Hoffman, 1976] Hoffman, A. Total Unimodularity and Combinatorial Theorems, Linear Algebra and Applications, 1976.
[5] [Matthews, 1984] Matthews. On the Implementability of Reduced Form Auctions, Econometrica, 1984.
[6] [Myerson, 1981] Myerson. Optimal Auction Design, Mathematics of Operations Research, 1981.

The End

